Myocardium

Mechanotransduction in cardiac hypertrophy and failure

Cardiac muscle cells have an intrinsic ability to sense and respond to mechanical load through a process known as mechanotransduction. In the heart, this process involves the conversion of mechanical stimuli into biochemical events that induce changes in myocardial structure and function. Mechanotransduction and its downstream effects function initially as adaptive responses that serve as compensatory mechanisms during adaptation to the initial load.

Relating Components of Pressure-Volume Area in Suga’s Formulation of Cardiac Energetics to Components of the Stress-Time Integral

The concept of pressure-volume area (PVA) in whole heart studies is central to the phenomenological description of cardiac energetics proposed by Suga and colleagues (Physiol Rev 70: 247-277, 1990). PVA consists of two components: an approximately rectangular work loop (W) and an approximately triangular region of potential energy (U). In the case of isovolumic contractions, PVA consists entirely of U. The utility of Suga's description of cardiac energetics is the observation that the oxygen consumption of the heart (Vo(2)) is linearly dependent on PVA.

Subscribe to RSS - Myocardium