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Dynamics of cross-bridge cycling, ATP hydrolysis, force generation, and deformation in cardiac 

muscle, Tewari et al. (2016) J Mol Cell Cardiol. 96:11-25, Model Documentation 

 

This document supplements the mathematical formulation of the model of Tewari et al. (2016) and 

serves as a guide to understand the associated computer code. 

Overall structure of model: 

 

Figure 1. Cardiac muscle model. 

 

In this model, 𝐹𝑋𝐵 is the active force generated by the cross-bridge mechanics, F1 and F2 are passive 

forces associated with the muscle, and F is the applied force. Overall force balance for the model yields 

𝐹(𝑡) = 𝐹𝑋𝐵(𝑡) + 𝐹1(𝑡) + 𝐹2(𝑡).        (1) 

The model has no mass (initial terms). 

Active and passive contributions to the force: 

The model for active force (𝐹𝑋𝐵) force due to cross bridge is  

𝐹𝑋𝐵(𝑡) =  𝑘𝑠𝑡𝑖𝑓𝑓,1 (∫ 𝑠𝑝
2
(𝑡, 𝑠)𝑑𝑠

+∞

−∞
+ ∫ 𝑠𝑝

3
(𝑡, 𝑠)𝑑𝑠

+∞

−∞
) +  𝑘𝑠𝑡𝑖𝑓𝑓,2 ∆𝑟 ∫ 𝑝

3
(𝑡, 𝑠)𝑑𝑠

+∞

−∞
,  (2) 

where  𝑘𝑠𝑡𝑖𝑓𝑓,1 and 𝑘𝑠𝑡𝑖𝑓𝑓,2 are effective stiffness constants, ∆𝑟 is the cross bridge strain associated with 

ratcheting deformation, and s is an independent variable representing strain in the population of attached cross-

bridge states. Thus, the integrals in Equation (2) represent the following quantities: 
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∫ 𝑠𝑝2(𝑡,𝑠)𝑑𝑠

+∞

−∞

∫ 𝑝2(𝑡,𝑠)𝑑𝑠
+∞

−∞

 : average strain of attached cross bridges in model state 2 

∫ 𝑠𝑝3(𝑡,𝑠)𝑑𝑠
+∞

−∞

∫ 𝑝3(𝑡,𝑠)𝑑𝑠
+∞

−∞

 : average strain of attached cross bridges in model state 3 

∫ 𝑝3(𝑡, 𝑠)𝑑𝑠
+∞

−∞
 : fraction of cross bridges in model state 3 

The spring and dashpot (𝐹1 and ) represent a linear Maxwell viscous model, governed by   

𝑑𝐹1

𝑑𝑡
=  𝐾𝑃𝐸,1(

𝑑𝐿

𝑑𝑡
−

𝐹1

𝜂
)          (3) 

 

 

How to get to equation (3):  

Consider the F1 branch in Fig. 1 that includes the dashpot (damper) and the spring. 

Since the dashpot and the spring are in series, the forces transmitted through both elements 

are equal 

𝐹1 =  𝐹𝜂 =  𝐹𝐾𝑃𝐸,1
.    (i) 

Total strain ∆𝐿 is equal to sum of the strains ∆𝐿 = ∆𝐿𝐾𝑃𝐸,1
+ ∆𝐿𝜂.    (ii) 

For the spring and the dashpot (viscous element) we can write the force-displacement and the 

force-rate of displacement equations as following: 

𝐹𝐾𝑃𝐸,1
= 𝐾𝑃𝐸,1 ∆𝐿𝐾𝑃𝐸,1

   (iii) 

𝐹𝜂 = 𝜂
 d𝐿𝜂

𝑑𝑡
      (iv) 

Now we obtain the rate of the change in lengths (L):  

(the derivative of Equation (ii) and (iii) w.r.t time (t)) 

 d𝐿

𝑑𝑡
=  

 d𝐿𝐾𝑃𝐸,1

𝑑𝑡
+

 d𝐿𝜂

𝑑𝑡
   (v) 

 d𝐿𝐾𝑃𝐸,1

𝑑𝑡
=

1

𝐾𝑃𝐸,1

 d𝐹𝐾𝑃𝐸,1

𝑑𝑡
   (vi) 

Recalling Equations (i), (iv), and (vi), we can rewrite Equation (v): 

 d𝐿

𝑑𝑡
=

1

𝐾𝑃𝐸,1

 d𝐹1

𝑑𝑡
 + 

𝐹1

𝜂
    (vii)    

Rearranging equation (vii) we get equation 3:   

𝑑𝐹1

𝑑𝑡
=  𝐾𝑃𝐸,1(

𝑑𝐿

𝑑𝑡
−

𝐹1

𝜂
)   (viii) 
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𝐹2 is a nonlinear force:  

𝐹2 (𝐿) =  {
𝛽. 𝐾𝑃𝐸,1  [𝑒

(𝑃𝐸𝑥𝑝𝑡𝑖𝑡𝑖𝑛
(𝐿−𝑆𝐿𝑟𝑒𝑠𝑡))

− 1]   𝑖𝑓 𝐿 > 𝑆𝐿𝑟𝑒𝑠𝑡

−𝛽. 𝐾𝑃𝐸,1  [𝑒
(𝑃𝐸𝑥𝑝𝑡𝑖𝑡𝑖𝑛

(𝑆𝐿𝑟𝑒𝑠𝑡−𝐿))
− 1]   𝑖𝑓 𝐿 < 𝑆𝐿𝑟𝑒𝑠𝑡

     (4) 

Where L is a sarcomere length1. 

To obtain a governing equation for length as a function of time, we rearrange Equation (3): 

𝑑𝐿

𝑑𝑡
=  

1

𝐾𝑃𝐸,1
(

𝑑𝐹1

𝑑𝑡
) +

𝐹1

𝜂
          (5) 

Substituting 𝐹1 = 𝐹 − 𝐹𝑋𝐵 − 𝐹2 from Equation (1) we have 

𝑑𝐿

𝑑𝑡
=  

𝐹̇−𝐹̇𝑋𝐵−𝐹̇2

𝐾𝑃𝐸,1
+

𝐹−𝐹𝑋𝐵−𝐹2

𝜂
 .        (6) 

 

To simulate muscle dynamics according to Equation (6), we need to calculate  𝐹̇𝑋𝐵 taking the time 

derivative of the Equation (2): 

𝐹̇𝑋𝐵 =  
𝑑𝐹𝑋𝐵

𝑑𝑡
=  𝑘𝑠𝑡𝑖𝑓𝑓,1

𝑑

𝑑𝑡
(∫ 𝑠𝑝2(𝑡, 𝑠)𝑑𝑠

+∞

−∞

+ ∫ 𝑠𝑝3(𝑡, 𝑠)𝑑𝑠
+∞

−∞

) +  𝑘𝑠𝑡𝑖𝑓𝑓,2 ∆𝑟
 𝑑

𝑑𝑡
∫ 𝑝3(𝑡, 𝑠)𝑑𝑠

+∞

−∞

 

(7) 

Using the moment definitions, this equation is written 

𝐹̇𝑋𝐵 =  𝑘𝑠𝑡𝑖𝑓𝑓,1(𝑝2
1̇ + 𝑝3

1̇)  +   𝑘𝑠𝑡𝑖𝑓𝑓,2 ∆𝑟(𝑝3
0̇ ).       (8) 

Expressions for 𝑝3
0̇,  𝑝2

1̇ and 𝑝3
1̇ are obtained from Equation (11) in the paper: 

𝑑𝑝2
1

𝑑𝑡
=  𝑣 𝑝2

0  + 𝑘1̃(𝑝1
1 − 𝛼1𝑝1

2) − 𝑘−1(𝑝2
1 + 𝛼1𝑝2

2) −  𝑘2 (𝑝2
1 − 𝛼2𝑝2

2) +  𝑘−2 (𝑝3
1)  

𝑑𝑝3
1

𝑑𝑡
=  𝑣 𝑝3

0 + 𝑘2 (𝑝2
1 − 𝛼2𝑝2

2) −  𝑘−2 (𝑝3
1)  − 𝑘3(𝑝3

1 − 𝛼3𝑠3
2𝑝3

1 + 2𝛼3𝑠3𝑝3
2)  

𝑑𝑝3
0

𝑑𝑡
=   𝑘2 (𝑝2

0 − 𝛼2𝑝2
1 + 0.5 ∗ 𝛼2

2𝑝2
2) −  𝑘−2 (𝑝3

0)  − 𝑘3(𝑝3
0 − 𝛼3𝑠3

2𝑝3
0 + 2𝛼3𝑠3𝑝3

1 + 𝑝3
2)  (9) 

(Note that for 𝑖 > 2 we assume 𝑝𝑘
𝑖  = 0.) 

Substituting Equations (9) into Equation (8): 

                                                           
1 Instead of x, SL and L which have been used interchangeably in the paper for sarcomere length, we use L for sarcomere 

length in this document. 
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𝐹̇𝑋𝐵 =  𝑘𝑠𝑡𝑖𝑓𝑓,1 ∗ (𝑣 𝑝2
0 + 𝑣 𝑝3

0 + 𝑘1̃(𝑝1
1 − 𝛼1𝑝1

2) − 𝑘−1(𝑝2
1 + 𝛼1𝑝2

2) + 𝑘3 (𝑝3
1 − 𝛼3𝑠3

2𝑝
3

1
+ 2𝛼3𝑠3𝑝3

2)) + 

𝑘𝑠𝑡𝑖𝑓𝑓,2 ∆𝑟 (𝑘2 (𝑝2
0 − 𝛼2𝑝2

1 + 0.5 ∗ 𝛼2
2𝑝

2

2
) − 𝑘−2 (𝑝3

0)  − 𝑘3 (𝑝3
0 − 𝛼3𝑠3

2𝑝
3

0
+ 2𝛼3𝑠3𝑝3

1 + 𝑝3
2))  

             (10) 

Recalling the velocity of sliding 

𝜈 =
𝑑𝐿

𝑑𝑡
    

We can cast the right-hand side of Equation (10) as having a velocity dependent term and velocity 

independent term: 

𝐹̇𝑋𝐵 = 𝐴𝑋𝐵 + 𝐵𝑋𝐵
𝑑𝐿

𝑑𝑡
            (11) 

where the velocity-dependent term is 

𝐵𝑋𝐵 =  𝑘𝑠𝑡𝑖𝑓𝑓,1( 𝑝2
0 + 𝑝3

0).         (12) 

 

Taking the derivative of 𝐹2 with respect to time, we have 

𝐹̇2 =  
𝜕𝐹2

𝜕𝐿

𝑑𝐿

𝑑𝑡
= (𝛽. 𝑘𝑃𝐸,2)(𝑃𝐸𝑥𝑝𝑡𝑖𝑡𝑖𝑛)[𝑒(𝑃𝐸𝑥𝑝𝑡𝑖𝑡𝑖𝑛(𝐿−𝑆𝐿𝑟𝑒𝑠𝑡))]

𝑑𝐿

𝑑𝑡
    (13)  

 

Next, substituting Equation (11) into the Equation (6) yields 

𝑑𝐿

𝑑𝑡
=

1

𝑘𝑃𝐸,1
(𝐹̇ − 𝐴𝑋𝐵 − 𝐵𝑋𝐵

𝑑𝐿

𝑑𝑡
−

𝜕𝐹2

𝜕𝐿

𝑑𝐿

𝑑𝑡
) +

1

𝜂
(𝐹 − 𝐹𝑋𝐵 − 𝐹2) .      (14) 

Rearranging we have 

𝑑𝐿

𝑑𝑡
(1 +

𝐵𝑋𝐵

𝑘𝑃𝐸,1
+

1

𝑘𝑃𝐸,1

𝜕𝐹2

𝜕𝐿
) =

1

𝑘𝑃𝐸,1
(𝐹̇ − 𝐴𝑋𝐵) +

1

𝜂
(𝐹 − 𝐹𝑋𝐵 − 𝐹2), 

or 

𝑑𝐿

𝑑𝑡
=

1

𝑘𝑃𝐸,1
(𝐹̇−𝐴𝑋𝐵)+

1

𝜂
(𝐹−𝐹𝑋𝐵−𝐹2)

(1+
𝐵𝑋𝐵

𝑘𝑃𝐸,1
+

1

𝑘𝑃𝐸,1

𝜕𝐹2

𝜕𝐿
)

  .        (15) 

 

Simulation of quick-release experiment: 

To simulate the quick-release experiment, the internal states of the cross bridges and the sarcomere 

length kinetics are simulated by integrating Equation (15) in parallel with Equation (3-6) from the paper, 

governing the cross-bridge kinetics: 

 
𝑑𝑃

𝑑𝑡
= 𝑘𝑛𝑝𝑁(𝑡) − 𝑘𝑝𝑛𝑃(𝑡) + 𝑘̃𝑑  𝑝̂1(𝑡, 𝑠) − 𝑘𝑎𝑃(𝑡) + 𝑘̃3 𝑒𝛼3(𝑠+𝑠3)2

𝑝3(𝑡, 𝑠)       (16) 
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𝜕𝑝1

𝜕𝑡
+

𝑑𝐿

𝑑𝑡

𝜕𝑝1

𝜕𝑠
= 𝑘𝑎𝛿(𝑠)𝑃(𝑡) − 𝑘̃𝑑  𝑝1 − 𝑘̃1 𝑒−𝛼1𝑠 𝑝1 + 𝑘−1 𝑒+𝛼1𝑠 𝑝2      

 
𝜕𝑝2

𝜕𝑡
+

𝑑𝐿

𝑑𝑡

𝜕𝑝2

𝜕𝑠
= 𝑘̃1 𝑒−𝛼1𝑠 𝑝1 − 𝑘−1 𝑒+𝛼1𝑠 𝑝2 − 𝑘2 𝑒−𝛼2𝑠 𝑝2 + 𝑘̃−2 𝑝3        

𝜕𝑝3

𝜕𝑡
+

𝑑𝐿

𝑑𝑡

𝜕𝑝3

𝜕𝑠
=  𝑘2 𝑒−𝛼1𝑠 𝑝2 − 𝑘̃−2 𝑝3 − 𝑘̃3 𝑒𝛼3(𝑠+𝑠3)2

𝑝3     

The initial state is obtained by holding the muscle at a fixed length L0 = 2.2 m, and integrating 

Equation (16) to reach a steady-state. Starting from this initial state, the applied force is reduced to a 

defined fraction of initial force, and the muscle dynamics simulated by integrating Equations (15) and 

(16). 

The following is the plot for the steady state force and fixed length of sarcomere. (L0 = 2.2 m) 

The magnitude of the steady state has been used as an initial condition.  

 

Following are the results with the above derivations 
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Corrections on the original MATLAB code: 

1. In the original code, 𝑝3
2  in Equation (10) was multiplied by 𝛼3 and the above derivation shows 

no coefficient for 𝑝3
2. This typo, which negligible effects on the results, is fixed in the current 

(2019) distribution of the codes. 

2. The Passive force subroutine has some typos for the passive force formulations. (Equations 2 and 

13) 
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Corrections in the paper: 

 

1. Equation (3) in the paper, should be (missing hat on 𝑝̂1 𝑎𝑛𝑑 𝑝̂3)  

 
𝑑𝑃

𝑑𝑡
= 𝑘𝑛𝑝𝑁(𝑡) − 𝑘𝑝𝑛𝑃(𝑡) + 𝑘̃𝑑  𝑝̂1(𝑡, 𝑠) − 𝑘𝑎𝑃(𝑡) + 𝑘̃3 𝑒𝛼3(𝑠+𝑠3)2

𝑝3(𝑡, 𝑠) -   

2. “𝐹” in denominator of the LHS of the equation 12 of the paper should be changed to 
𝑑𝐿

𝑑𝑡
 

𝑑𝐿

𝐹𝑡
  

𝑑𝐿

𝑑𝑡
 

3. Page 23, Appendix D, line 11. “Panels C and D of Fig. D1” should be changed to “Panels B and D of 

Fig. D1” 

 


