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6 and Bioengineering Center, Medical College of
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8 Synonyms

9 Evolution programs; Numerical optimization

10 Definition

11 Optimization and parameter estimation problems in

12 systems biology are often associated with cost func-

13 tions that are complex and multidimensional with

14 a large number of local minima, which makes them

15 unsuitable for gradient-based optimization (Mendes

16 2001) (▶Optimization and Parameter Estimation,

17 Gradient-Based Optimization). In the context of opti-

18 mization and parameter estimation in systems biology,

19 genetic algorithms (GAs) refer to a class of biologi-

20 cally inspired algorithms that are used to search for the

21 best parameter set that fits a computational model of

22 a biological system to a given data set(s).

23 In GAs, candidate solutions to a problem are

24 known as individuals that are encoded as chromo-

25 somes, whose fitness is evaluated according to user

26 defined criteria. GAs are based on finding the fittest

27 individual through successive generations of parame-

28 ter populations formed based on genetic operators

29 such as selection, crossover, and mutation. These

30operations are aimed at generating the fittest individual

31while maintaining diversity in a given generation or

32parameter population for effectively searching the

33parameter space.

34Characteristics

35A typical GA has the following sequence of

36operations:

371. Initialize a population of parameter sets and evalu-

38ate their fitness values.

392. Select parents from the current generation; use

40crossover and/or mutation operators to generate

41offspring for the next generation.

423. Evaluate the fitness of individuals in the new

43generation.

444. Terminate if the fittest individual of the current

45generation meets a predefined criterion, the fitness

46value converges, or computational costs have

47exceeded a given budget; otherwise, go back to

48Step 2.

49For a successful application of GAs to a given opti-

50mization problem, appropriate values of several key

51parameters of the GA must be chosen, namely, an

52encoding scheme, population size, selection operator,

53crossover operator, mutation probability, and elitism

54settings (Spall 2003, p. 247).

55Encoding and Fitness Evaluation

56Each individual parameter set is encoded into

57a chromosome using a binary representation in a

58canonical GA (Holland 1991) or a suitable representa-

59tion for a given problem such as gray code (Spall

602003), decimal (Charbonneau 2002), or real valued
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61 encoding (Michalewicz 1996). For example, a decimal

62 encoding and decoding scheme could be implemented

63 using the following equations (Eqs. 3.10–3.13 in

64 Charbonneau and Knapp 1995) for parameter sets

65 with specified finite upper and lower bounds:

66 A parameter set x shown in Eq. 1 is written as

67 a sequence of parameter values to be encoded as

68 a chromosome:

x � ðx1; x2; :::::xnÞ (1)

69 Each parameter xk is mapped to a [0, 1] interval

70 corresponding to the parameter lower and upper

71 bounds, which would be represented as an element

72 Xk with nd genes corresponding to the desired

73 precision.

xk 2 ½0; 1� ! Xk ¼ X1;X2; :::;Xndð Þk (2)

74 Encoding of each gene Xj in Xk is given by:

Xj ¼ mod 10nd�jþ1xk
� �

; 10
� �

; j ¼ 1; 2; :::; nd (3)

75 where b c represents flooring.
76 The decoding of the kth gene into the kth parameter

77 is given by:

xk ¼ 1

10nd

Xnd

j¼1

Xj10
j�1 (4)

78 Integer encoding could have the disadvantage of

79 encountering the so-called Hamming cliff, i.e.,

80 a small change in the parameter space could lead to

81 a huge change in the encoded representation, which

82 cannot be easily traversed by uniform mutation opera-

83 tors. For example, the decimal encoded representations

84 of 0.0999 and 0.1000 at 4 decimal precision are 9990

85 and 0001, respectively. This is a large distance in the

86 encoded space for genetic operators to traverse

87 whereas the parameter space increment is the smallest

88 increment for the given precision. Gray coding could

89 be employed to overcome Hamming cliffs (Spall 2003,

90 p. 241). Alternatively, a creep mutation strategy could

91 be used, which increments or decrements a gene

92 selected for mutation, to achieve a carryover to the

93 next digit and crossing of the Hamming cliff

94 (Charbonneau 2002, pp. 34–35).

95AGAworks toward maximizing the average fitness

96of a population. Therefore, the fitness function in

97a parameter estimation problem could be represented

98as 1 divided by the sum of squares of residuals when

99parent selection is fitness-proportional or by ranking

100the sum of squares of error appropriately with

101the lowest sum of squares of residuals as the fittest

102individual in rank-based selection methods (see

103definitions below).

104Selection

105The selection operator chooses parent chromosomes

106from the current generation (of population size N)

107to generate offspring in a manner analogous to

108natural selection (i.e., based on fitness). The fitness-

109proportional roulette wheel algorithm is one common

110selection scheme that assigns to each chromosome

111a sector of a roulette wheel with an area proportional

112to its fitness Fi. The total area of the wheel, Atot, is

113given by:

Atot ¼
XN

i¼1

Fi (5)

114Also associated with each chromosome is

115a cumulative area given by:

Sj ¼
Xj

i¼1

Fi; j ¼ 1; :::;N; (6)

116A random number R (corresponding to a wheel

117spin) is drawn from the uniform distribution bounded

118by [0, Atot], and a parent is chosen which satisfies the

119condition:

Sj�1 � R < Sj (7)

120This procedure is repeated N times to select the

121parents used to generate the subsequent generation

122(Charbonneau and Knapp 1995, p. 12).

123Important drawbacks of the fitness-proportional

124algorithm described above include the possibility of

125premature convergence caused by the early dominance

126of a few highly-fit chromosomes in the population and

127the related problem of diminishing convergence in

128later generations when diversity is low (Goldberg

1291989, pp. 76–77; Mitchell 1996, p. 166). Various
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130 modifications and alternatives to the above approach

131 have been devised to maintain optimal selection pres-

132 sure throughout the optimization process. Several

133 common modifications rely on linear scaling of raw

134 fitness values using transformations such as:

F0 ¼ aFþ b (8)

135 where F0 is the scaled fitness vector and a and b are

136 constants (Goldberg 1989, pp. 121–124). Other

137 methods include rank-based selection (e.g., rank-

138 based roulette wheel algorithm), where selection prob-

139 ability is proportional to fitness rank rather than fitness

140 value; tournament selection, where parents are

141 selected as the fittest members of N small sets of n <

142 N chromosomes randomly chosen from the population;

143 and other variations of these approaches (Goldberg

144 1989, pp. 124–125; Spall 2003, pp. 249–250).

145 Annealing schedules (similar to those applied in sim-

146 ulated annealing algorithms) and various adaptive

147 schemes can also be used to adjust selection pressure

148 through the course of a GA run (Charbonneau and

149 Knapp 1995, pp. 71–72; Mitchell 1996, pp. 168–169).

150 To ensure that random crossover and mutation

151 events (see below) do not eradicate the best chromo-

152 somes(s) from the population, elitism is used to pre-

153 serve these chromosomes across generations. This

154 involves the replication of one or more of the best

155 chromosomes of the current generation directly into

156 the subsequent generation.

157 Crossover and Mutation

158 The crossover and mutation operators compose the

159 reproduction step of a GA and are the major means

160 by which a GA explores the parameter space. Cross-

161 over, recognized as a defining operator of GA (Davis

162 1991, p. 17; Mitchell 1996, p. 171), refers to the

163 exchange of “building blocks” (groups of genes)

164 between parent chromosomes to generate children

165 chromosomes that are different from the parents yet

166 contain information derived from the parents. Muta-

167 tion refers to a random change in the allele (value) of

168 a gene or genes of parent chromosomes with the pur-

169 pose of adding diversity to the children chromosomes.

170 Both the exchange, through crossover, and manipula-

171 tion, through both crossover and mutation, of building

172 blocks form the basis of schema theory in GA (for

173discussion, see Goldberg 1989; Davis 1991; Spall

1742003).

175In its simplest form, crossover involves reciprocal

176exchange of genes around a single randomly chosen

177splice site, as illustrated in Fig. 1a. This is known as

178one-point crossover. Usually, a probability test

179(involving a random number draw) is performed for

180each pair of parents to determine whether to perform

181the operation. Drawbacks of one-point crossover

182include the inability to exchange certain combinations

183of genes and the biased exchange of genes near the

184ends of chromosomes. In addition, larger building

185blocks are less likely to be preserved (Mitchell 1996,

186pp. 171–172).

187One alternative scheme, known as two-point cross-

188over, involves the exchange of genes between two

189randomly chosen splice sites (see Fig. 1b). While mit-

190igating certain positional effects, many combinations

191of exchange are not possible using two-point cross-

192over. Uniform crossover (see Fig. 1c) allows exchange

193at any and all gene positions with exchange sites being

194chosen on a probabilistic basis. However, the high rate

195of recombination of building blocks in uniform cross-

196over can be deleterious (Mitchell 1996, pp. 171–172).

197In a real-value encoding scheme, any of the above

198crossover operations may be implemented with some

199minor modifications (including handling of within-

200element crossovers). A different crossover approach

201in real-value schemes involves linear combinations

202(e.g., averaging) of parents to produce children

203(Davis 1991, pp. 65–66; Charbonneau and

204Knapp 1995, pp. 72–74; Michalewicz 1996, p. 102;

205Spall 2003, p. 244).

206The mutation operator typically involves

207a probability test (involving a random number draw)

208on a gene-by-gene basis to determine whether

209a mutation event occurs at a given gene position.

210In an integer-value encoding scheme, the mutation

211event involves replacement of a gene with

212a randomly chosen allele. Mutation in a real-value

213encoding scheme can involve the addition of a small

214random vector (known as “creep” mutation) to the

215elements of a chromosome (Davis 1991, pp. 66–69),

216or an element-wise approach involving a probability

217test on each element to determine whether to perform

218the mutation. Creep mutation is also used in integer-

219valued schemes to overcome the Hamming cliff

220problem as described above. In the element-wise

221approach, the mutation event involves replacement of

Optimization and Parameter Estimation, Genetic Algorithms 3 O
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222 the element with a random number drawn from within

223 the solution bounds (Michalewicz 1996, pp. 101–102;

224 Spall 2003, p. 245).

225 Selection of parameters of the crossover and muta-

226 tion operations is critical to the performance of GA.

227 For instance, too large a mutation rate destroys favor-

228 able mutations as fast as it makes them leading to

229 convergence on a poor solution, whereas too low

230 a mutation rate impedes efficient search through

231 the parameter space (Charbonneau 2002, pp. 17–21).

232 Similarly, too low a crossover rate limits effective

233 mixing of the population (and therefore search through

234 the parameter space). Choice of these parameters

235 is problem specific and usually heuristic. A variety of

236 adaptive schemes have been devised to improve

237 robustness, many of which act on these parameters

238 (Davis 1991, Chap. 7; Charbonneau and Knapp 1995,

239 pp. 19–20; Mitchell 1996, pp. 175–177).

240 Replacement Plans: Generational and

241 Steady State

242 The initial generation is constituted by the initial

243 population of a particular size created from any distri-

244 bution chosen by the user, following parameter

245 constraints for the given problem. Subsequent genera-

246 tions are constituted by individuals produced by

247 genetic operators acting on the current generation.

248 The entire population from a previous generation

249 could be entirely replaced by the new generation in

250 a generational replacement plan. Elitism strategy could

251 be used to ensure that the best solutions found in a

252 generation are not lost. A generational replacement

253 plan can be readily implemented in a parallel comput-

254 ing scheme.

255 Another class of replacement plans, known as

256 steady state plans, generally involves replacing one

257 member of the population for every iteration of parent

258 selection and production of offspring. The member to

259 be replaced could be the member with the least fitness

260 or could be randomly selected. The former plan

261 ensures elitism. According to Sharma and De Jong

262 (2001), the loss of genetic diversity also known as

263genetic drift in steady state replacement plans is higher

264for smaller population sizes when compared to gener-

265ational replacement plans.

266Cross-References

267▶Genetic Algorithms

268▶Global Optimization

269▶Global Optimum

270▶Heuristic Optimization

271▶ Inverse Problem

272▶Optimization and Parameter Estimation, Gradient-

273Based Optimization

274▶Optimization and Parameter Estimation, Monte-

275Carlo Methods
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One-point crossover

1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1

1 1 1 0 0 0 0 0

Children

Children

Children

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1

1 0 1 1 0 0 1 0

0 0 0 1 1 1 1 0

1 1 1 0 0 0 0 1

0 0 0 0

Parents

Parents

Parents

0 0 0 0

0 0 0 0 0 0 0 0

Two-point crossover

Uniform crossover

a

b

c

Optimization and Parameter Estimation, Genetic Algo-
rithms, Fig. 1 Examples of (a) one-point, (b) two-point, and
(c) uniform crossover in a binary encoded scheme
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